

nem

 IN THE STAR TREK episode "Mirror, Mirror," whefrious counterparts.

IF YOU LIVE ON THIS PLANET - AND YOU'RE OF A CERTAIN AGE - THERE'S A DECENT CHANCE YOU'VE SEEN THE CLASSIC STAR TREK EPISODE "MIRRDR, MIRROR," IN WHICH CAPTAIN KIRK AND SEVERAL MEMBERS OF THE ENTERPRISE FIND THEMSELVES IN WHAT APPEARS TO BE A PARALLEL UNIVERSE.

The trouble starts when they attempt to beam up from a planet during an ion storm. Something goes wrong. They appear aboard the Enterprise, but thing are askew: Crew members greet the captain with Nazi-style salutes, and First Officer Spock sports a goatee. Observing these small but significant differences, Kirk muses that the crew has materialized in "a parallel universe coexisting with ours on another dimensional plane."
These days, one parallel universe is hardly enough for science fiction. Instead, it seems the entire multiverse is having its Hollywood moment. Films like Doctor Strange in the Multiverse of Madness and Everything Everywhere All at Once entice the viewer with multiple versions of various characters and a dizzying array of alternate realities. Though they're not particularly heavy on the physics, these films are definitely latching onto something. The idea of the muluerse - the provacave notion - has fully cemented itself in main stream pop culture. (Or, at least, in the
current phase of the Marvel Cinematic Universe.) Its appeal as a storytelling device is obvious. Just as time travel allowed Marty McFly to experience diferent timelines in the Back to the Future series, multiverse tales allow characters o explore a multitude of worlds with varying degrees of similarity to our own, as well as altered versions of themselves. While Hollywood can't seem to get enough of the multiverse, it remains deeply controversial among scientists. Ask a prominent physicist whether they believe in a multitude of universes beyond our own, and you'll get either a resounding yes or a vehement no, depending on whom you encounter. Advocates on the two sides show no mercy toward each other in their ooks, on their blogs, and, of course, on Twitter. But physicists didn't pull the idea out of thin air - rather, several distinct lines of reasoning seem to point the miverses existence, bolstering he ideas ment. Sabine Hossenflder, , 1 tu alled the multivers "
controversial idea in physics." The debate over the existence of unseen universes may seem rather pie-in-the-sky. After all, how could worlds that we can never visit - or even detect — possibly affect anyone's life? But the stakes are higher than they appear: Critics caution that legitimizing the multiverse could make it harder for the public to distinguish science from speculation, making it more difficult to keep pseudoscience at bay. (If scientists can't agree about how many universes exist, how can the public be sure there's a consensus on the reality of climate change, or the efficacy of vaccines?) Writing in the journal Nature in 2014, physicists George Ellis and Joe Silk describe the debate over the multiverse as a "battle for the heart and soul of physics."
Philosophers have pondered a multiplicity of worlds at least since the ancient Greeks. But it was only in the 20th century that astronomers and physicists began to talk physicists began to talk about multip
universes in the terms we use today.

In the 1920s, astronomers found that istant galaxies are moving away from each other, implying that the universe self is expanding. If you ran a recording the history of our cosmos backward the galaxies would be seen rushing row whes in the chusion was that, in the remote past, u Bi Bang model of cosmogr wh escribe how the wivers ogolved wer he past 13.8 billion years from an ultra obling freball to the enormou nd vast expanse we know today
The first pathway to suspecting the ight be a multiverse emerged when cientists found problems with this riginal Big Bang model. The univers original Big Bang model. The universe clumped together to form stars, planets, nd galaxies, while the space between hese objects is nearly empty. And yet nder the Big Bang model, the very early universe is believed to have been acredibly homogeneous, with every part just about as hot and dense as every ther part, like a cup of hot chocolate hat's been thoroughly stirred.
So how did today's clumpy, structured niverse come about? In the 1970s and ' 80 s, a handful of physicists, led by Alan Guth, Andrei Linde and Alexei tarobinsky, put forward a modified ersion of the Big Bang, known as inflation. In the inflation model, some tiny bit of space-time underwent a tupendous (if brief) growth spurt, asting no more than a trillionth of a rillionth of a second. This exponential xpansion enlarged miniscule variations in the distribution of matter throughout he universe. Over time, those variations grew to be the galaxies and clusters of alaxies that now pepper the cosmos, ontaining within them countless star and planets.
But if inflation could blow up one bit of space-time, why not many bits of space-time. Why shouldnt inflation be happening continuously, creating new be be any way to constrain inflation so the notion f" "ternal inflation" was orn with it. In this view, little pocket

THE MULTIPLE MULTIUE:FF5

There isn't just one theory that suggests we live in a multiverse. In fact. physicists have found that several different ideas in particle physics and cosmology appear to point to the existence of universes beyond our own.

ETERNAL INFLATION: This multiverse model presents a world where little "pocket universes" are continuously popping into existence. It stems from the idea of cosmological inflation, which posits that the universe went through a massive growth spurt in the first moments of the Big Bang. These pocket universes grew just as ours did, and might now contain stars, planets and galaxies like ours.

STRING THEORY: In this theory, our universe is described as though made up of tiny, vibrating strings that are too small to detect. The equations of string theory have billions upon billions of solutions; some physicists believe this leads inflation.
MANY WORLDS: An attempt to explain a key aspect of quantum mechanics the many worlds theory says that the universe splits each time a quantum measurement is made. This leads to an ever-growing array of universes within a branching multiverse. The model suggests that this multiverse contains multiple copies of you, as well.
universes - Stephen Hawking pre ferred the phrase baby universes - are continuously popping up, with the tally of new universes endlessly increasing. (In the context of "Mirror, Mirror," we might imagine a universe where Spock has a full beard or mohawk, alongside an infinite number of other scenarios.) Some physicists welcomed this multiplicity of universes. In his lecture siides, Linde, one of eternal hations greatest litte as little colored spheres, bubbling up like a frothy pot of boiling water He is on record as sayinghed
the multiverse is real.
Others are more cautious. Andreas Albrecht, a theoretical physicist at the University of California, Davis, who alongside Princeton University heoretical physicist Paul Steinhardt helped shape inflation into its modern orm, finds eternal inflation troublin That trouble stems from the idea of nfinity itself.
To be sure, infinity is no problem for mathematicians scribbling equations blackboards. But physicists strive oesn't encounter an infinite number fanthing let alone universes "at th
eternal inflation, they say they have all these universes popping up. And I'm like, well, where are they popping? Of course, no one sees anything popping; it's just there in the mathematics." Through the 1980s and early '90s, even with inflation slowly solidifying its status as the go-to model of the early universe, the idea of eternal inflation remained little more than a sideshow. Most physicists didn't worry too much about the (alleged) extra universes. Out of sight, out of mind, as it were. However, another idea from the frontiers of physics was brewing at around the same time - and it seemed to lend support to the many-universes idea. This new approach came from string theory, the notion that the universe is made up of tiny, vibrating strings, far smaller than anything we could see through our best microscopes, or even detect with our most powerful particle accelerators.
String theory's equations allow for a multitude of solutions, each corre sponding, physicists have suggested, to a distinct universe. And so, like eternal inflation, string theory appears to allow Stanford University physicist Leonard Suskind described the resulting picta as a "landscane" funiverses, seemi as "andscape" of universes, seeming

worlds" interpretation of quantum mechanics First, a Quantum 101 refresher: Quantum mechanics rests on the function, a kind of function, a kind of mathematical recipe for predicting wher or how it will be moving, at some movis, at some particular moment evolve over time; evolve over time;
that evolution is that evolution is
governed by the governed by the
Schrödinger equa
echoing the multiverse given by eternal inflation In fact, many physicists In fact, many physicists
believe the two ideas are intimately related. "You can't separate them," says Sean Carroll, a theoretical physicist at Johns Hopkins University "One is saying that different regions, where there are different local laws of physics, can possibly exist; that's what the string theory landscape is saying. Inflation is saying, 'And they become real."

The multiverse controversy is ooted in the notion of testability. If we can't interact with these other universes, or detect them in any way, some experts insist that relegates them to mere philosophical speculation. But multiverse proponents see it differently: There may be very good reasons to believe in the multiverse, they argue, ven if we cannot poke at it or glimpse its many niverses.
Albrecht, like many physicists, was never comfortable with the ersion of the multiverse saggested by eternal till, he found himseof drawn to another kind f multiverse - the ffered by the "many

STRING THEDRY'S EQUATIONS ALLOW FOR A MULTITUDE OF SOLUTIONS, EACH CDRRESPDNDING, PHYSICISTS HAVE SUGEESTED,TDA DISTINCTUNIVERSE.
tion, roughly analogous to Newton's equation $\mathrm{F}=\mathrm{ma}$ (force equals mass times acceleration). Where Newton's physics determines the path of a thrown baseball, Schrödinger's equation predicts the future state of a quantum system. The catch is that we cannot know what state a quantum system is in until we measure it. Prior to measurement, it can even be in a superposition of states; that is, it's in many states all at once. Sound familiar?
To demonstrate the principle, consider an electron. According to quantum mechanics, an electron can spin in two different ways ("up" and "down," in physics terms). Before you look at the electron, the theory says its spin is indeterminate; it can be in both states, spin-up and spin-down. But when you actually measure the elec tron's spin, the wave func tion "collapses," and the superposition goes away; you're left with one spin or the other. This view is called the Copenhagen interpretation of quantum mechanics, after the city where its first proponents Niels Bohr and Werne Heisenberg, worked. Schrödinger, worried about the possibility of about the possibiity of up and impacting the

THE MULTIUEREE ON SLREEN

As the titular Doctor Strange, Benedict umberbatch flits between universes with ease. Mild-mannered laundromat owner Evelyn Nang (Michelle Yeoh) battles her own demons from various branches of the multiverse. Tom Holland's Peter Parker takes a spin with alternat versions of the character from prior movies
From Doctor Strange in the Multiverse of Madness and Spider-Man: No Way Home to Everything Everywhere All at Once, alternate universes are plentiful in movies today. But

T'S A WONDERFUL LIFE (1946): In this Christmastime classic, George Bailey, contemplating suicide, tells is guardian angel, Clarence Odbody, that he wishes
e'd never been born. But
Odbody shows Bailey an alternative universe in whic he had indeed never lived - and it's much worse. In he end (75 -year-old spoiler lert), Bailey asks for his original life back.

RUN LOLA RUN and SIDING DOORS (both from 1998): In both of these me the : intral character experiences multiple
timelines depending on how a specific moment unfolds. In Run Lola Run, it all hinges on what happens when Lola (Franka Potente) runs down the stairs of her apartment. In Sliding Doors, the timelines diverge depending on whether Helen Quilley (Gwyneth Paltrow) manages to board a London Underground train before the doors close.
THE ONE (2001): The multiverse figures prominently in this Jet Li action film, in which a rogue agent travels to
parallel universes in
writers and filmmakers have been exploring the topic for nearly a century. On screen, some of these stories allude to physics; often, the paraliel universes are merely imagined, playing out only in a character's head. But these tales all capitalize on what the multiverse offers endless chances to imagine what could (or should) have happened if things went differently. Here is just a sampling of the many films that have toyed with the idea of multiple universes, and are well worth your time:

[^0]an infinite number. Worlds without end... Who are you in this vast multiverse, Mr. Strange?"
SPIDER-MAN: INTO THE SPIDER-VERSE (2018): This multi-dimensional take on the web-spinner features multiple Spideys from multiple Earths - including
a version of the superhero a version of the superhero as a talking cartoon pig. In 019, it won the Academy Award for Best Animated Feature. -D.F.

0
cause wave functions to collapse, and what qualifies as a measurement in the first place? Maybe, a few thinkers have suggested, the wave function doesn't collapse. Ever. Instead, when we make a measurement, the universe divides, or branches, creating a brand-new universe for each possible outcome. (Some experts caution against this phrasing as being overly simplistic, but it will do for our purposes.) When we look at that electron, the universe splits in two, with one universe containing a spin-up electron and one containing a spin-down electron. Schrödinger's cat is similarly tamed: In one universe, the cat lives; in another, it dies. These universes also contain unique copies of you - or, unique copies of universe-hopping Evelyn Wang, in the case of Everything Everywhere All at Once.
This many worlds view of quantum mechanics was first set out by physicist Hugh Everett in the 1950s, and has slowly gained followers in the decades since. Albrecht is one of them; he sees the idea as elegant. For him, the Copenhagen notion, "rins mysterious appeal to il-d and ard Plus quantu unwieldy and awkward. Plus, quantum mechanics works, its much more with actual technology like lasers, winactual scanners to show for it. Carroll is also

made the mistake of thinking that the math behind the theory is real. Carroll vehemently disagrees He argues channeling Galileo - that mathematics is the language we use to describe our physical theories; it is not some extra,
added ingredient added ingredient. No one looks at F $=$ ma and goes, 'Oh
that's mathematics that's mathematics,
an ardent advocate for Everett's model, arguing the case in his 2019 book Something Deeply
Hidden, in which he calls the theory's array of unseen universes "indisputably real."
Max Tegmark, a physicist at MIT, expounded on the many worlds model in his 2014 book Our Mathematical Universe. Tegmark says he often thinks about the other copies of himself in those other worlds: "I feel a strong kinship with parallel Maxes, even though never get to meet them," he writes. "They share my values, my feelings, $m y$ nemories - they re closer to me than brothers.'
For Hossenfelder, however, those parallel Maxes are mere fiction, along with most conjecture about the nultiverse. The problem, as she sees it, is that we take the equations too seriously, a position she details in her 2018 book, Lost in Math. Hossenfelder takes the view of an instrumentalist, a philosophical stance that says we should take a theory seriously only fit leads to verifiable, measurable predictions. In this view, Everett's heory offers a particular mathematical approach to quantum mechanics, what's really out there whats really out there. Albrecht and Carroll hav

ONCE, WEIMAEINED THE EARTH AND THE SUN WERE UNIDUE; NOW WE KNOW THAT EVERY STAR IS A SUN, AND THAT MANY HAVE PLANETS DREITINE AROUND THEM.
going to stick to physics,'" Carroll says. For him, Newton's equation is obviFor him, Newtons equation is obvi-
ously physics, and so is Schrödingers. ously physics, and so is Schrödinger's.
If Schrödinger's equation predicts the If xchrodinger's equation predicts the
existence of many worlds, so be it. If we existence of many worlds, so be it. If we
take Newton seriously, we should take take Newton seriously, we sh
Schrödinger seriously, too.
Most physicists see Everett's many worlds as fundamentally different from those given by eternal inflation or by the landscape version of string theory. (Though a few theorists, including Susskind and Tegmark, have speculated that they may be connected.) Even so, the fact that several pathways seem to point to a multiverse suggests that the idea is worthy of such scrutiny. "Whether there's a multiverse or not does not hinge on any one theory being right or wrong," says veteran science writer Tom Siegfried, who examined the history of the multiverse idea in his 2019 book The Number of the Heavens. "There are different possible ways there could b a multiverse, and we don't know if any of them are correct. [...] But we have reasons to take some of these ideas seriously," The way Hossenfelder sees it, having a basket of speculative theories is no better than having just one. In every case, were asked to believe in the existence of universes that we can never see or study it's wrong" Im not saying just saying it's no longer
cience."
The controversy may sound like harmless infighting among a small group of physicists. But in their 2014 Nature essay, Ellis and Silk argued that if physicists arent careful in distinguishing speculative theories from established act, the public could be led astray. Giving credit to such speculation could open the door for pseudoscientists oo claim that their ideas meet similar requirements."
Or, as Columbia University physicist Peter Woit wrote on his blog, those who support the multiverse idea risk "turn[ing] fundamental physics into pseudo-science." For Nobel laureate physicist David Gross, invoking unseen niverses to explain the properties of the ne we actually see is a bit like invoking God. He once said that it "smells of religion and intelligent design.
As scientists struggle to choose
between competing explanations for what King Hamlet, in this , bust William of Ockham The 14th centur English churchman and philocopher gest known for Ockhas Razor, wis
suggests that simple explanations are better than more compleated Ockham's approach
might appear to argue against the multiverse on the grounds that it carries excessive baggage (all of those unseen universes) when we just experience single universe. For many physicists, the argument ends there. If simpler is better, why not stick with the universe we actually see?
Except, explains Siegfried, Ockham did not merely say that simpler is bette Rather, in devising an explanation, it's desirable to use the fewest principles, even if they lead to complex results, Ockham argued. (It's no knock against, say, astrophysics, that it predicts billion of planets orbiting billions of stars.) Not only that, Ockham was actually pro-multiverse. Ockham himself was the biggest advate "He he multiverse, Siegfried says. He argued vigorously against all of Aristotes objections to king of ironic that people use Ockh Razor to ar the,"

Home, there's a playful scene in which

THIS IMAGE shows The pattern has helped scientist!

 helped scientistunderstand the understand the
evolution of our
universe.
today's web-spinner, played by Tom Holland meets parallel-universe versier film himself fron actors Andrew Garfield and Tobey Maguire. This is, to be sure, straight-up fition. We have no chance of ever ctually seeing the universes described y eternal inflation, string theory, or he many worlds version of quantum mechanics. That also nixes the odds of ver encountering our other selves. The odds are similarly low that the debate ver the multiverse will end soon. But history, according to Siegfried, suggests which way the wind is blowing: At one time, the only galaxy we knew of was the Milky Way; now we know that billions of other galaxies are scattered hroughout the universe. Could a more xpansive view of the universe itselfb he next break hrough? As siegrrie puts it: "Every time in the past that 've thought, Weve got it, this is what , whole universe is' -the people ore said, Maye theres more than be right"" ${ }^{\text {D }}$

Dan Falk (@danfalk) is a science journalist

[^0]: to kill other versions of himself.

 COHERENCE (2013): A reunion for a group of friends goes awry when a passing comet splits reality in two. Their only hope for survival is to hunt down thei multiverse doppelgängers.
 DOCTOR STRANGE (2016): The film presents Doctor Strange's origin story - and at least pays lip service to modern physics. At one Soint The Ancient One (Tilda Swinton) says to Strang "This universe is only

